Phytochrome B integrates light and temperature signals in Arabidopsis.
نویسندگان
چکیده
Ambient temperature regulates many aspects of plant growth and development, but its sensors are unknown. Here, we demonstrate that the phytochrome B (phyB) photoreceptor participates in temperature perception through its temperature-dependent reversion from the active Pfr state to the inactive Pr state. Increased rates of thermal reversion upon exposing Arabidopsis seedlings to warm environments reduce both the abundance of the biologically active Pfr-Pfr dimer pool of phyB and the size of the associated nuclear bodies, even in daylight. Mathematical analysis of stem growth for seedlings expressing wild-type phyB or thermally stable variants under various combinations of light and temperature revealed that phyB is physiologically responsive to both signals. We therefore propose that in addition to its photoreceptor functions, phyB is a temperature sensor in plants.
منابع مشابه
Phytochrome B and REVEILLE1/2-mediated signalling controls seed dormancy and germination in Arabidopsis
Seeds maintain a dormant state to withstand adverse conditions and germinate when conditions become favourable to give rise to a new generation of flowering plants. Seed dormancy and germination are tightly controlled by internal and external signals. Although phytochrome photoreceptors are proposed to regulate primary seed dormancy, the underlying molecular mechanism remains elusive. Here we s...
متن کاملPhotoreceptors CRYTOCHROME2 and phytochrome B control chromatin compaction in Arabidopsis.
Development and acclimation processes to the environment are associated with large-scale changes in chromatin compaction in Arabidopsis (Arabidopsis thaliana). Here, we studied the effects of light signals on chromatin organization. A decrease in light intensity induces a large-scale reduction in chromatin compaction. This low light response is reversible and shows strong natural genetic variat...
متن کاملLight signals, phytochromes and cross-talk with other environmental cues.
Plants have evolved highly complex sensory mechanisms to monitor their surroundings and adapt their growth and development to the prevailing environmental conditions. The integration of information from multiple environmental cues enables the co-ordination of development with favourable seasonal conditions and, ultimately, determines plant form. Light signals, perceived via the phytochrome, cry...
متن کاملPhytochrome A enhances the promotion of hypocotyl growth caused by reductions in levels of phytochrome B in its far-red-light-absorbing form in light-grown Arabidopsis thaliana.
We sought to determine if phytochrome B (phyB)-mediated responses to the red light (R)/far-red light (FR) ratio are affected by phytochrome A (phyA) activity in light-grown seedlings of Arabidopsis thaliana. Pulses of FR delayed into the dark period were less effective than end-of-day (EOD) FR in promoting hypocotyl growth over a given period in darkness. White light minus blue light interposed...
متن کاملDoes EID1 aid the fine-tuning of phytochrome A signal transduction in Arabidopsis?
The field of plant photobiology has achieved great progress since the early 1990s, when genetic analyses using the model plant Arabidopsis began to be applied to this area of study. One of the characteristics of plants is their developmental plasticity, which defines a difference between plants and animals. Their plasticity is provided by their finely regulated perception of environmental signa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Science
دوره 354 6314 شماره
صفحات -
تاریخ انتشار 2016